Intracanal molar barometric pressure differentials at simulated altitude conditions - proof of concept study.

نویسندگان

  • H W Roberts
  • T C Kirkpatrick
چکیده

AIM To evaluate whether objective data could be obtained regarding internal pressure conditions of a molar tooth with canals prepared but not filled exposed to reduced barometric pressures that could be experienced by aircrew. METHODOLOGY The root canals of five mandibular molars were prepared but not filled. Root apices were sealed with a resin-modified glass-ionomer liner and root surfaces sealed with a dental adhesive. The sealed root surfaces were then coated with a polyvinylsiloxane (PVS) adhesive and the teeth inserted into cylinders of PVS impression material to the level of the cervical enamel junction. Barometric pressure transducers were placed in the pulp chambers with the endodontic access sealed with cotton and a provisional restoration. The specimens were then subjected to a manually controlled, atmospheric altitude challenge consisting of a slow ascent and descent to a simulated 25 000 feet above sea level followed by a rapid altitude climb and descent. The real-time difference between intracanal and simulated atmospheric pressures were recorded and correlated (Pearson's, P = 0.05). RESULTS No tooth material fractured, and there was no failure of the provisional restorations. Barometric pressures inside the closed prepared molar canals and the ambient atmospheric pressure were found to correlate (r(2)  = 0.97-0.99; P < 0.0001), but pressure equalization lags were observed. However, no differences greater than six pounds per square inch (310 torr) were noted. CONCLUSION This pilot study established a protocol that demonstrated that objective data regarding barometric pressures within the prepared canals of molars can be obtained at simulated altitude conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute mountain sickness: increased severity during simulated altitude compared with normobaric hypoxia.

Acute mountain sickness (AMS) strikes those in the mountains who go too high too fast. Although AMS has been long assumed to be due solely to the hypoxia of high altitude, recent evidence suggests that hypobaria may also make a significant contribution to the pathophysiology of AMS. We studied nine healthy men exposed to simulated altitude, normobaric hypoxia, and normoxic hypobaria in an envir...

متن کامل

Influence of barometric pressure on interleukin-1b secretion

Becker, William J., and Joseph G. Cannon. Influence of barometric pressure on interleukin-1b secretion. Am J Physiol Regulatory Integrative Comp Physiol 280: R1897–R1901, 2001.— Monocytes and macrophages are activated by various environmental challenges, including microorganisms, radiation, and pollutants. These cells release cytokines, such as interleukin (IL)-1b, that mediate physiological ad...

متن کامل

Peak expiratory flow at altitude.

The mini Wright peak flow meter is a useful, portable instrument for field studies but being sensitive to air density will under-read at altitude. True peak expiratory flow will increase at altitude, however, because of the decreased air density, given that dynamic resistance is unchanged. The effect of simulated altitude on peak expiratory flow (PEF) was determined in six subjects with both th...

متن کامل

The Relation of Exercise to Bubble Formation in Animals Decompressed to Sea Level from High Barometric Pressures

1. Bullfrogs (Rana catesbiana) and rats have been subjected to high barometric pressures and studied for bubble formation on subsequent decompression to sea level. Pressures varying from 3 to 60 pounds per square inch, in excess of atmospheric pressure, were used. 2. Muscular activity after decompression is necessary for bubble formation in bullfrogs after pressure treatment throughout the abov...

متن کامل

Daytime blood pressure elevation after nocturnal hypoxia.

The purpose of this study was to investigate whether nocturnal hypoxia causes daytime blood pressure (BP) elevation. We hypothesized that overnight exposure to hypoxia leads the next morning to elevation in BP that outlasts the hypoxia stimulus. We studied the effect on BP of two consecutive night exposures to hypobaric hypoxia in 10 healthy normotensive subjects. During the hypoxia nights, sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International endodontic journal

دوره 49 8  شماره 

صفحات  -

تاریخ انتشار 2016